Explore >> Select a destination


You are here

susam.net
| | pfzhang.wordpress.com
2.3 parsecs away

Travel
| | Consider a monic polynomial with integer coefficients: $latex p(x)=x^d + a_1 x^{d-1} + \cdots + a_{d-1}x + a_d$, $latex a_j \in \mathbb{Z}$.The complex roots of such polynomials are called algebraic integers. For example, integers and the roots of integers are algebraic integers. Note that the Galois conjugates of an algebraic integer are also algebraic integers....
| | andrea.corbellini.name
4.8 parsecs away

Travel
| | [AI summary] The text provides an in-depth explanation of elliptic curve cryptography (ECC), covering fundamental concepts such as elliptic curves over finite fields, point addition, cyclic subgroups, subgroup orders, and the discrete logarithm problem. It also discusses practical aspects like finding base points, cofactors, and the importance of choosing subgroups with high order for cryptographic security. The text emphasizes that ECC relies on the difficulty of solving the discrete logarithm problem on elliptic curves, which is considered computationally hard and forms the basis for secure cryptographic protocols like ECDH and ECDSA.
| | www.jeremykun.com
2.0 parsecs away

Travel
| | Last time we defined and gave some examples of rings. Recapping, a ring is a special kind of group with an additional multiplication operation that "plays nicely" with addition. The important thing to remember is that a ring is intended to remind us arithmetic with integers (though not too much: multiplication in a ring need not be commutative). We proved some basic properties, like zero being unique and negation being well-behaved.
| | mathematicaloddsandends.wordpress.com
25.4 parsecs away

Travel
| The function $latex f(x) = x \log x$ occurs in various places across math/statistics/machine learning (e.g. in the definition of entropy), and I thought I'd put a list of properties of the function here that I've found useful. Here is a plot of the function: $latex f$ is defined on $latex (0, \infty)$. The only...