Explore >> Select a destination


You are here

utkuufuk.com
| | teddykoker.com
5.9 parsecs away

Travel
| | A few posts back I wrote about a common parameter optimization method known as Gradient Ascent. In this post we will see how a similar method can be used to create a model that can classify data. This time, instead of using gradient ascent to maximize a reward function, we will use gradient descent to minimize a cost function. Lets start by importing all the libraries we need:
| | michael-lewis.com
9.8 parsecs away

Travel
| | This is a short summary of some of the terminology used in machine learning, with an emphasis on neural networks. I've put it together primarily to help my own understanding, phrasing it largely in non-mathematical terms. As such it may be of use to others who come from more of a programming than a mathematical background.
| | www.oranlooney.com
11.6 parsecs away

Travel
| | Consider the following motivating dataset: Unlabled Data It is apparent that these data have some kind of structure; which is to say, they certainly are not drawn from a uniform or other simple distribution. In particular, there is at least one cluster of data in the lower right which is clearly separate from the rest. The question is: is it possible for a machine learning algorithm to automatically discover and model these kinds of structures without human assistance?
| | www.jeremykun.com
83.1 parsecs away

Travel
| Machine learning is broadly split into two camps, statistical learning and non-statistical learning. The latter we've started to get a good picture of on this blog; we approached Perceptrons, decision trees, and neural networks from a non-statistical perspective. And generally "statistical" learning is just that, a perspective. Data is phrased in terms of independent and dependent variables, and statistical techniques are leveraged against the data. In this post we'll focus on the simplest example of thi...