Explore >> Select a destination


You are here

www.oranlooney.com
| | www.depthfirstlearning.com
4.1 parsecs away

Travel
| | [AI summary] The user has provided a detailed and complex set of questions and reading materials related to normalizing flows, variational inference, and generative models. The content covers topics such as the use of normalizing flows to enhance variational posteriors, the inference gap, and the implementation of models like NICE and RealNVP. The user is likely seeking guidance on how to approach these questions, possibly for academic or research purposes.
| | iamirmasoud.com
3.0 parsecs away

Travel
| | Amir Masoud Sefidian
| | yang-song.net
3.9 parsecs away

Travel
| | This blog post focuses on a promising new direction for generative modeling. We can learn score functions (gradients of log probability density functions) on a large number of noise-perturbed data distributions, then generate samples with Langevin-type sampling. The resulting generative models, often called score-based generative models, has several important advantages over existing model families: GAN-level sample quality without adversarial training, flexible model architectures, exact log-likelihood ...
| | www.paepper.com
12.8 parsecs away

Travel
| When you have a big data set and a complicated machine learning problem, chances are that training your model takes a couple of days even on a modern GPU. However, it is well-known that the cycle of having a new idea, implementing it and then verifying it should be as quick as possible. This is to ensure that you can efficiently test out new ideas. If you need to wait for a whole week for your training run, this becomes very inefficient.