Explore >> Select a destination


You are here

jaywillmath.wordpress.com
| | mikespivey.wordpress.com
13.2 parsecs away

Travel
| | The Riemann zeta function $latex \zeta(s)$ can be expressed as $latex \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$, for complex numbers s whose real part is greater than 1. By analytic continuation, $latex \zeta(s)$ can be extended to all complex numbers except where $latex s = 1$. The power sum $latex S_a(M)$ is given by $latex S_a(M) =...
| | dominiczypen.wordpress.com
9.1 parsecs away

Travel
| | Let $latex \omega$ denote the first infinite cardinal - that is, the set of non-negative integers. Let $latex p_0 = 2$ be the smallest prime number, and let $latex (p_n)_{n\in\omega}$ enumerate all prime numbers in ascending order. Let $latex \mathcal{U}$ be a free ultrafilter on $latex \omega$. We consider the field $latex F = \big(\prod_{n\in\omega}\mathbb{Z}/p_n\mathbb{Z}\big)/{\mathcal...
| | algorithmsoup.wordpress.com
9.6 parsecs away

Travel
| | The ``probabilistic method'' is the art of applying probabilistic thinking to non-probabilistic problems. Applications of the probabilistic method often feel like magic. Here is my favorite example: Theorem (Erdös, 1965). Call a set $latex {X}&fg=000000$ sum-free if for all $latex {a, b \in X}&fg=000000$, we have $latex {a + b \not\in X}&fg=000000$. For any finite...
| | curiousterran.wordpress.com
17.4 parsecs away

Travel
| Visit the post for more.