|
You are here |
theorydish.blog | ||
| | | | |
terrytao.wordpress.com
|
|
| | | | | A key theme in real analysis is that of studying general functions $latex {f: X \rightarrow {\bf R}}&fg=000000$ or $latex {f: X \rightarrow {\bf C}}&fg=000000$ by first approximating them b | |
| | | | |
almostsuremath.com
|
|
| | | | | The aim of this post is to motivate the idea of representing probability spaces as states on a commutative algebra. We will consider how this abstract construction relates directly to classical probabilities. In the standard axiomatization of probability theory, due to Kolmogorov, the central construct is a probability space $latex {(\Omega,\mathcal F,{\mathbb P})}&fg=000000$. This consists... | |
| | | | |
qchu.wordpress.com
|
|
| | | | | As a warm-up to the subject of this blog post, consider the problem of how to classify$latex n \times m$ matrices $latex M \in \mathbb{R}^{n \times m}$ up to change of basis in both the source ($latex \mathbb{R}^m$) and the target ($latex \mathbb{R}^n$). In other words, the problem is todescribe the equivalence classes of the... | |
| | | | |
clutterreport.wordpress.com
|
|
| | | attempting to clean up my living and workspace | ||