|
You are here |
rjlipton.com | ||
| | | | |
xorshammer.com
|
|
| | | | | There are a number of applications of logic to ordinary mathematics, with the most coming from (I believe) model theory. One of the easiest and most striking that I know is called Ax's Theorem. Ax's Theorem: For all polynomial functions $latex f\colon \mathbb{C}^n\to \mathbb{C}^n$, if $latex f$ is injective, then $latex f$ is surjective. Very... | |
| | | | |
mattbaker.blog
|
|
| | | | | Test your intuition: is the following true or false? Assertion 1: If $latex A$ is a square matrix over a commutative ring $latex R$, the rows of $latex A$ are linearly independent over $latex R$ if and only if the columns of $latex A$ are linearly independent over $latex R$. (All rings in this post... | |
| | | | |
www.jeremykun.com
|
|
| | | | | In our last primer we looked at a number of interesting examples of metric spaces, that is, spaces in which we can compute distance in a reasonable way. Our goal for this post is to relax this assumption. That is, we want to study the geometric structure of space without the ability to define distance. That is not to say that some notion of distance necessarily exists under the surface somewhere, but rather that we include a whole new class of spaces for which no notion of distance makes sense. | |
| | | | |
clutterreport.wordpress.com
|
|
| | | attempting to clean up my living and workspace | ||