|
You are here |
lucatrevisan.wordpress.com | ||
| | | | |
thenumb.at
|
|
| | | | | [AI summary] The text discusses the representation of functions as vectors and their applications in various domains such as signal processing, geometry, and physics. It explains how functions can be treated as vectors in a vector space, leading to the concept of eigenfunctions and eigenvalues, which are crucial for understanding and manipulating signals and geometries. The text also covers different types of Laplacians, including the standard Laplacian, higher-dimensional Laplacians, and the Laplace-Beltrami operator, and their applications in fields like image compression, computer graphics, and quantum mechanics. The discussion includes spherical harmonics, which are used in representing functions on spheres, and their applications in game engines and glo... | |
| | | | |
www.jeremykun.com
|
|
| | | | | In our last primer we saw the Fourier series, which flushed out the notion that a periodic function can be represented as an infinite series of sines and cosines. While this is fine and dandy, and quite a powerful tool, it does not suffice for the real world. In the real world, very little is truly periodic, especially since human measurements can only record a finite period of time. Even things we wish to explore on this blog are hardly periodic (for instance, image analysis). | |
| | | | |
fabricebaudoin.blog
|
|
| | | | | In this section, we consider a diffusion operator $latex L=\sum_{i,j=1}^n \sigma_{ij} (x) \frac{\partial^2}{ \partial x_i \partial x_j} +\sum_{i=1}^n b_i (x)\frac{\partial}{\partial x_i}, $ where $latex b_i$ and $latex \sigma_{ij}$ are continuous functions on $latex \mathbb{R}^n$ and for every $latex x \in \mathbb{R}^n$, the matrix $latex (\sigma_{ij}(x))_{1\le i,j\le n}$ is a symmetric and non negative matrix. Our... | |
| | | | |
blog.vstelt.dev
|
|
| | | [AI summary] The article explains the process of building a neural network from scratch in Rust, covering forward and backward propagation, matrix operations, and code implementation. | ||