You are here |
hbiostat.org | ||
| | | |
fharrell.com
|
|
| | | | Historical data (HD) are being used increasingly in Bayesian analyses when it is difficult to randomize enough patients to study effectiveness of a treatment. Such analyses summarize observational studies' posterior effectiveness distribution (for two-arm HD) or standard-of-care outcome distribution (for one-arm HD) then turn that into a prior distribution for an RCT. The prior distribution is then flattened somewhat to discount the HD. Since Bayesian modeling makes it easy to fit multiple models at once... | |
| | | |
www.fharrell.com
|
|
| | | | Many researchers worry about violations of the proportional hazards assumption when comparing treatments in a randomized study. Besides the fact that this frequently makes them turn to a much worse approach, the harm done by violations of the proportional odds assumption usually do not prevent the proportional odds model from providing a reasonable treatment effect assessment. | |
| | | |
fharrell.com
|
|
| | | | Researchers have used contorted, inefficient, and arbitrary analyses to demonstrated added value in biomarkers, genes, and new lab measurements. Traditional statistical measures have always been up to the task, and are more powerful and more flexible. It's time to revisit them, and to add a few slight twists to make them more helpful. | |
| | | |
errorstatistics.com
|
|
| | The following is the February stop of our leisurely cruise (meeting 6 from my 2020 Seminar at the LSE). There was a guest speaker, Professor David Hand. Slides and videos are below. Ship StatInfasSt may head back to port or continue for an additional stop or two. Leisurely Cruise February 25: Power, shpower, severity, positive... |