|
You are here |
kyunghyuncho.me | ||
| | | | |
iclr-blogposts.github.io
|
|
| | | | | The transfer of matching-based training from Diffusion Models to Normalizing Flows allows to fit expressive continuous normalizing flows efficiently and therefore enables their usage for different kinds of density estimation tasks. One particularly interesting task is Simulation-Based Inference, where Flow Matching enabled several improvements. The post shall focus on the discussion of Flow Matching for Continuous Normalizing Flows. To highlight the relevance and the practicality of the method, their use and advantages for Simulation-Based Inference is elaborated. | |
| | | | |
www.depthfirstlearning.com
|
|
| | | | | [AI summary] The user has provided a detailed and complex set of questions and reading materials related to normalizing flows, variational inference, and generative models. The content covers topics such as the use of normalizing flows to enhance variational posteriors, the inference gap, and the implementation of models like NICE and RealNVP. The user is likely seeking guidance on how to approach these questions, possibly for academic or research purposes. | |
| | | | |
akosiorek.github.io
|
|
| | | | | Machine learning is all about probability.To train a model, we typically tune its parameters to maximise the probability of the training dataset under the mo... | |
| | | | |
research.google
|
|
| | | Posted by Jakob Uszkoreit, Software Engineer, Natural Language Understanding Neural networks, in particular recurrent neural networks (RNNs), are n... | ||