You are here |
cyclostationary.blog | ||
| | | |
www.earlevel.com
|
|
| | | | ||
| | | |
yang-song.net
|
|
| | | | This blog post focuses on a promising new direction for generative modeling. We can learn score functions (gradients of log probability density functions) on a large number of noise-perturbed data distributions, then generate samples with Langevin-type sampling. The resulting generative models, often called score-based generative models, has several important advantages over existing model families: GAN-level sample quality without adversarial training, flexible model architectures, exact log-likelihood ... | |
| | | |
www.jeremykun.com
|
|
| | | | In our last primer we saw the Fourier series, which flushed out the notion that a periodic function can be represented as an infinite series of sines and cosines. While this is fine and dandy, and quite a powerful tool, it does not suffice for the real world. In the real world, very little is truly periodic, especially since human measurements can only record a finite period of time. Even things we wish to explore on this blog are hardly periodic (for instance, image analysis). | |
| | | |
www.analyticsvidhya.com
|
|
| | Improve your deep learning model performance by understanding 4 key challenges and the tricks to overcome them. |