Explore >> Select a destination


You are here

blog.cy.md
| | blog.otoro.net
12.1 parsecs away

Travel
| | [AI summary] This article describes a project that combines genetic algorithms, NEAT (NeuroEvolution of Augmenting Topologies), and backpropagation to evolve neural networks for classification tasks. The key components include: 1) Using NEAT to evolve neural networks with various activation functions, 2) Applying backpropagation to optimize the weights of these networks, and 3) Visualizing the results of the evolved networks on different datasets (e.g., XOR, two circles, spiral). The project also includes a web-based demo where users can interact with the system, adjust parameters, and observe the evolution process. The author explores how the genetic algorithm can discover useful features (like squaring inputs) without human intervention, and discusses the ...
| | blog.keras.io
11.5 parsecs away

Travel
| | [AI summary] The text discusses various types of autoencoders and their applications. It starts with basic autoencoders, then moves to sparse autoencoders, deep autoencoders, and sequence-to-sequence autoencoders. The text also covers variational autoencoders (VAEs), explaining their structure and training process. It includes code examples for each type of autoencoder and mentions the use of tools like TensorBoard for visualization. The VAE section highlights how to generate new data samples and visualize the latent space. The text concludes with references and a note about the potential for further topics.
| | michael-lewis.com
10.1 parsecs away

Travel
| | This is a short summary of some of the terminology used in machine learning, with an emphasis on neural networks. I've put it together primarily to help my own understanding, phrasing it largely in non-mathematical terms. As such it may be of use to others who come from more of a programming than a mathematical background.
| | www.kdnuggets.com
17.9 parsecs away

Travel
| Unlocking the power of AI: a suide to neural networks and their applications.