Explore >> Select a destination


You are here

saturncloud.io
| | vxlabs.com
2.8 parsecs away

Travel
| | I have recently become fascinated with (Variational) Autoencoders and with PyTorch. Kevin Frans has a beautiful blog post online explaining variational autoencoders, with examples in TensorFlow and, importantly, with cat pictures. Jaan Altosaar's blog post takes an even deeper look at VAEs from both the deep learning perspective and the perspective of graphical models. Both of these posts, as well as Diederik Kingma's original 2014 paper Auto-Encoding Variational Bayes, are more than worth your time.
| | wtfleming.github.io
2.6 parsecs away

Travel
| | [AI summary] This post discusses achieving 99.1% accuracy in binary image classification of cats and dogs using an ensemble of ResNet models with PyTorch.
| | www.nicktasios.nl
3.1 parsecs away

Travel
| | In the Latent Diffusion Series of blog posts, I'm going through all components needed to train a latent diffusion model to generate random digits from the MNIST dataset. In this first post, we will tr
| | blog.fastforwardlabs.com
14.8 parsecs away

Travel
| This article is available as a notebook on Github. Please refer to that notebook for a more detailed discussion and code fixes and updates. Despite all the recent excitement around deep learning, neural networks have a reputation among non-specialists as complicated to build and difficult to interpret. And while interpretability remains an issue, there are now high-level neural network libraries that enable developers to quickly build neural network models without worrying about the numerical details of floating point operations and linear algebra.