|
You are here |
gigasquid.github.io | ||
| | | | |
coornail.net
|
|
| | | | | Neural networks are a powerful tool in machine learning that can be trained to perform a wide range of tasks, from image classification to natural language processing. In this blog post, well explore how to teach a neural network to add together two numbers. You can also think about this article as a tutorial for tensorflow. | |
| | | | |
www.paepper.com
|
|
| | | | | [AI summary] This article explains how to train a simple neural network using Numpy in Python without relying on frameworks like TensorFlow or PyTorch, focusing on the implementation of ReLU activation, weight initialization, and gradient descent for optimization. | |
| | | | |
programmathically.com
|
|
| | | | | Sharing is caringTweetIn this post, we develop an understanding of why gradients can vanish or explode when training deep neural networks. Furthermore, we look at some strategies for avoiding exploding and vanishing gradients. The vanishing gradient problem describes a situation encountered in the training of neural networks where the gradients used to update the weights [] | |
| | | | |
blog.ephorie.de
|
|
| | | [AI summary] The blog post explores the connection between logistic regression and neural networks, demonstrating how logistic regression can be viewed as the simplest form of a neural network through mathematical equivalence and practical examples. | ||