|
You are here |
asecuritysite.com | ||
| | | | |
www.johndcook.com
|
|
| | | | | The Bitcoin key mechanism is based on elliptic curve cryptography over a finite field. This post gives a brief overview. | |
| | | | |
andrea.corbellini.name
|
|
| | | | | [AI summary] The text provides an in-depth explanation of elliptic curve cryptography (ECC), covering fundamental concepts such as elliptic curves over finite fields, point addition, cyclic subgroups, subgroup orders, and the discrete logarithm problem. It also discusses practical aspects like finding base points, cofactors, and the importance of choosing subgroups with high order for cryptographic security. The text emphasizes that ECC relies on the difficulty of solving the discrete logarithm problem on elliptic curves, which is considered computationally hard and forms the basis for secure cryptographic protocols like ECDH and ECDSA. | |
| | | | |
www.jeremykun.com
|
|
| | | | | So far in this series we've seen elliptic curves from many perspectives, including the elementary, algebraic, and programmatic ones. We implemented finite field arithmetic and connected it to our elliptic curve code. So we're in a perfect position to feast on the main course: how do we use elliptic curves to actually do cryptography? History As the reader has heard countless times in this series, an elliptic curve is a geometric object whose points have a surprising and well-defined notion of addition. | |
| | | | |
www.sjoerdlangkemper.nl
|
|
| | | To securely store passwords they should be hashed with a slow hashing function, such as PBKDF2. PBKDF2 is slow because it calls a fast hash function many times. This blog post explores some properties that the iterations must have to be secure. | ||