|
You are here |
tiao.io | ||
| | | | |
ssc.io
|
|
| | | | | When a machine learning (ML) model exhibits poor quality (e.g., poor accuracy or fairness), the problem can often be traced back to errors in the training data. Being able to discover the data examples that are the most likely culprits is a fundamental concern that has received a lot of attention recently. One prominent way to measure 'data importance' with respect to model quality is the Shapley value. Unfortunately, existing methods only focus on the ML model in isolation, without considering the broader ML pipeline for data preparation and feature extraction, which appears in the majority of real-world ML code. This presents a major limitation to applying existing methods in practical settings. In this paper, we propose Canonpipe, a method for efficiently... | |
| | | | |
www.depthfirstlearning.com
|
|
| | | | | [AI summary] The user has provided a detailed and complex set of questions and reading materials related to normalizing flows, variational inference, and generative models. The content covers topics such as the use of normalizing flows to enhance variational posteriors, the inference gap, and the implementation of models like NICE and RealNVP. The user is likely seeking guidance on how to approach these questions, possibly for academic or research purposes. | |
| | | | |
11011110.github.io
|
|
| | | | | J. J. Hopfield, of neural net fame, just put out a new paper on associative memory and Sudoku. The Sudoku part involves constructing a (highly nonrandom) neu... | |
| | | | |
www.paepper.com
|
|
| | | When you have a big data set and a complicated machine learning problem, chances are that training your model takes a couple of days even on a modern GPU. However, it is well-known that the cycle of having a new idea, implementing it and then verifying it should be as quick as possible. This is to ensure that you can efficiently test out new ideas. If you need to wait for a whole week for your training run, this becomes very inefficient. | ||