|
You are here |
sriku.org | ||
| | | | |
nelari.us
|
|
| | | | | In inverse transform sampling, the inverse cumulative distribution function is used to generate random numbers in a given distribution. But why does this work? And how can you use it to generate random numbers in a given distribution by drawing random numbers from any arbitrary distribution? | |
| | | | |
gregorygundersen.com
|
|
| | | | | [AI summary] The blog post derives the expected value of a left-truncated lognormal distribution, explaining the mathematical derivation and validating it with Monte Carlo simulations. | |
| | | | |
www.randomservices.org
|
|
| | | | | [AI summary] The text covers various topics in probability and statistics, including continuous distributions, empirical density functions, and data analysis. It discusses the uniform distribution, rejection sampling, and the construction of continuous distributions without probability density functions. The text also includes data analysis exercises involving empirical density functions for body weight, body length, and gender-specific body weight. | |
| | | | |
francisbach.com
|
|
| | | [AI summary] This text discusses the scaling laws of optimization in machine learning, focusing on asymptotic expansions for both strongly convex and non-strongly convex cases. It covers the derivation of performance bounds using techniques like Laplace's method and the behavior of random minimizers. The text also explains the 'weird' behavior observed in certain plots, where non-strongly convex bounds become tight under specific conditions. The analysis connects theoretical results to practical considerations in optimization algorithms. | ||