|
You are here |
svmiller.com | ||
| | | | |
www.huber.embl.de
|
|
| | | | | If you are a biologist and want to get the best out of the powerful methods of modern computational statistics, this is your book. | |
| | | | |
www.markhw.com
|
|
| | | | | [AI summary] The blog post discusses modeling variance in data using the gamlss package in R, focusing on the user's film ratings over time. It highlights how the standard deviation of ratings increases with the release year of films, reflecting the user's movie selection habits. The analysis shows that older films have higher average ratings and lower variability, while newer films have lower average ratings and higher variability. The post emphasizes the importance of considering variance in social phenomena and provides practical examples using R for data visualization and statistical modeling. | |
| | | | |
post8000.svmiller.com
|
|
| | | | | ||
| | | | |
hbiostat.org
|
|
| | | In this article I provide much more extensive simulations showing the near perfect agreement between the odds ratio (OR) from a proportional odds (PO) model, and the Wilcoxon two-sample test statistic. The agreement is studied by degree of violation of the PO assumption and by the sample size. A refinement in the conversion formula between the OR and the Wilcoxon statistic scaled to 0-1 (corcordance probability) is provided. | ||