|
You are here |
www.jeremykun.com | ||
| | | | |
dusted.codes
|
|
| | | | | The beauty of asymmetric encryption - RSA crash course for developers | |
| | | | |
kndrck.co
|
|
| | | | | Motivation RSA (Rivest-Shamir-Adleman) is one of the first public-key cryptosystems and is widely used for secure data transmission. In such a cryptosystem, the encryption key is public and is different from the decryption key which is kept secret. If I wanted to comprehend zero knowledge proofs, then understanding the grand-daddy of public-key cryptosystems is a must. Background Maths Exponential Rules 1 $$ \begin{align} \label{eq:exponent_rule} g^{a-b} &= \dfrac{g^a}{g^b} \newline g^{a+b} &= g^a g^b \n... | |
| | | | |
blog.trailofbits.com
|
|
| | | | | Here at Trail of Bits we review a lot of code. From major open source projects to exciting new proprietary software, we've seen it all. But one common denominator in all of these systems is that for some inexplicable reason people still seem to think RSA is a good cryptosystem to use. Let me save [...] | |
| | | | |
mkatkov.wordpress.com
|
|
| | | For probability space $latex (\Omega, \mathcal{F}, \mathbb{P})$ with $latex A \in \mathcal{F}$ the indicator random variable $latex {\bf 1}_A : \Omega \rightarrow \mathbb{R} = \left\{ \begin{array}{cc} 1, & \omega \in A \\ 0, & \omega \notin A \end{array} \right.$ Than expected value of the indicator variable is the probability of the event $latex \omega \in... | ||