|
You are here |
liorsinai.github.io | ||
| | | | |
jingnanshi.com
|
|
| | | | | Tutorial on automatic differentiation | |
| | | | |
thenumb.at
|
|
| | | | | [AI summary] This text provides a comprehensive overview of differentiable programming, focusing on its application in machine learning and image processing. It explains the fundamentals of automatic differentiation, including forward and backward passes, and demonstrates how to implement these concepts in a custom framework. The text also discusses higher-order differentiation and its implementation in frameworks like JAX and PyTorch. A practical example is given using differentiable programming to de-blur an image, showcasing how optimization techniques like gradient descent can be applied to solve real-world problems. The text emphasizes the importance of differentiable programming in enabling efficient and flexible computation for various domains, includ... | |
| | | | |
matbesancon.xyz
|
|
| | | | | What can automated gradient computations bring to mathematical optimizers, what does it take to compute? | |
| | | | |
blog.keras.io
|
|
| | | [AI summary] The text discusses various types of autoencoders and their applications. It starts with basic autoencoders, then moves to sparse autoencoders, deep autoencoders, and sequence-to-sequence autoencoders. The text also covers variational autoencoders (VAEs), explaining their structure and training process. It includes code examples for each type of autoencoder and mentions the use of tools like TensorBoard for visualization. The VAE section highlights how to generate new data samples and visualize the latent space. The text concludes with references and a note about the potential for further topics. | ||