|
You are here |
jonathanlewis.wordpress.com | ||
| | | | |
oracletoday.blogspot.com
|
|
| | | | | I use STATSPACK extensively for comparing two time periods, comparing a time period to a baseline, monitoring trends and diagnosing perform... | |
| | | | |
thehftguy.com
|
|
| | | | | We're going to talk about advanced performance optimization in Python. Let's say we are processing numerous small json objects in an application. Each object looks like this: 'link_product': '/product/id/222.product_name', 'id_product': '222', 'description': 'a very long description goes there. can be a thousand characters.', 'og:type': 'product', 'og:title': 'summary goes there', 'manufacturers': ['firstcompany', 'secondcompany'], 'link_manufacturers': ['/manufacturer/id/10732', '/manufacturer/id/2797'],... | |
| | | | |
tanelpoder.com
|
|
| | | | | On Exadata (or when setting cell_offload_plan_display = always on non-Exadata) you may see the storage() predicate in addition to the usual access() and filter() predicates in an execution plan: SQL> SELECT * FROM dual WHERE dummy = 'X'; D - X Check the plan: SQL> @x Display execution plan for last statement for this session from library cache... PLAN_TABLE_OUTPUT ------------------------------------------------------------------------------------------------------------------------ SQL_ID dtjs9v7q7zj1g, child number 0 ------------------------------------- SELECT * FROM dual WHERE dummy = 'X' Plan hash value: 272002086 ------------------------------------------------------------------------ | Id | Operation | Name | E-Rows |E-Bytes| Cost (%CPU)| ------------... | |
| | | | |
blog.yannickjaquier.com
|
|
| | | SQL Plan Management feature overview through concrete example and its interactions with Adaptive Cursor Sharing (ACS) and SQL Profile | ||