You are here |
rjlipton.com | ||
| | | |
www.jeremykun.com
|
|
| | | | In our last primer we saw the Fourier series, which flushed out the notion that a periodic function can be represented as an infinite series of sines and cosines. While this is fine and dandy, and quite a powerful tool, it does not suffice for the real world. In the real world, very little is truly periodic, especially since human measurements can only record a finite period of time. Even things we wish to explore on this blog are hardly periodic (for instance, image analysis). | |
| | | |
www.jeremykun.com
|
|
| | | | Last time we defined and gave some examples of rings. Recapping, a ring is a special kind of group with an additional multiplication operation that "plays nicely" with addition. The important thing to remember is that a ring is intended to remind us arithmetic with integers (though not too much: multiplication in a ring need not be commutative). We proved some basic properties, like zero being unique and negation being well-behaved. | |
| | | |
www.jeremykun.com
|
|
| | | | The First Isomorphism Theorem The meat of our last primer was a proof that quotient groups are well-defined. One important result that helps us compute groups is a very easy consequence of this well-definition. Recall that if $ G,H$ are groups and $ \varphi: G \to H$ is a group homomorphism, then the image of $ \varphi$ is a subgroup of $ H$. Also the kernel of $ \varphi$ is the normal subgroup of $ G$ consisting of the elements which are mapped to the identity under $ \varphi$. | |
| | | |
andrea.corbellini.name
|
|
| |