|
You are here |
dennybritz.com | ||
| | | | |
www.v7labs.com
|
|
| | | | | A neural network activation function is a function that is applied to the output of a neuron. Learn about different types of activation functions and how they work. | |
| | | | |
www.analyticsvidhya.com
|
|
| | | | | Explore RNNs: their unique architecture, working principles, BPTT, pros/cons, and Python implementation using Keras. | |
| | | | |
blog.otoro.net
|
|
| | | | | [AI summary] This article describes a project that combines genetic algorithms, NEAT (NeuroEvolution of Augmenting Topologies), and backpropagation to evolve neural networks for classification tasks. The key components include: 1) Using NEAT to evolve neural networks with various activation functions, 2) Applying backpropagation to optimize the weights of these networks, and 3) Visualizing the results of the evolved networks on different datasets (e.g., XOR, two circles, spiral). The project also includes a web-based demo where users can interact with the system, adjust parameters, and observe the evolution process. The author explores how the genetic algorithm can discover useful features (like squaring inputs) without human intervention, and discusses the ... | |
| | | | |
www.analyticsvidhya.com
|
|
| | | Explore our step-by-step tutorial on image classification using CNN and master the process of accurately classifying images with CNN. | ||