|
You are here |
obrhubr.org | ||
| | | | |
www.exxactcorp.com
|
|
| | | | | [AI summary] The text provides an in-depth overview of Deep Reinforcement Learning (DRL), focusing on its key components, challenges, and applications. It explains how DRL combines reinforcement learning (RL) with deep learning to handle complex decision-making tasks. The article discusses the limitations of traditional Q-learning, such as the need for a Q-table and the issue of unstable target values. It introduces Deep Q-Networks (DQNs) as a solution, highlighting the use of experience replay and target networks to stabilize training. Additionally, the text highlights real-world applications like AlphaGo, Atari game playing, and oil and gas industry use cases. It concludes by emphasizing DRL's potential for scalable, human-compatible AI systems and its rol... | |
| | | | |
brandinho.github.io
|
|
| | | | | Reinforcement Learning, Neural Networks, Policy Gradient | |
| | | | |
www.mlpowered.com
|
|
| | | | | Blog posts and other information | |
| | | | |
sirupsen.com
|
|
| | | [AI summary] The article provides an in-depth explanation of how to build a neural network from scratch, focusing on the implementation of a simple average function and the introduction of activation functions for non-linear tasks. It discusses the use of matrix operations, the importance of GPUs for acceleration, and the role of activation functions like ReLU. The author also outlines next steps for further exploration, such as expanding the model, adding layers, and training on datasets like MNIST. | ||