Explore >> Select a destination


You are here

blog.evjang.com
| | blog.otoro.net
1.6 parsecs away

Travel
| | [AI summary] This article describes a project that combines genetic algorithms, NEAT (NeuroEvolution of Augmenting Topologies), and backpropagation to evolve neural networks for classification tasks. The key components include: 1) Using NEAT to evolve neural networks with various activation functions, 2) Applying backpropagation to optimize the weights of these networks, and 3) Visualizing the results of the evolved networks on different datasets (e.g., XOR, two circles, spiral). The project also includes a web-based demo where users can interact with the system, adjust parameters, and observe the evolution process. The author explores how the genetic algorithm can discover useful features (like squaring inputs) without human intervention, and discusses the ...
| | bdtechtalks.com
1.8 parsecs away

Travel
| | The transformer model has become one of the main highlights of advances in deep learning and deep neural networks.
| | resources.paperdigest.org
0.9 parsecs away

Travel
| | The Conference on Neural Information Processing Systems (NIPS) is one of the top machine learning conferences in the world. Paper Digest Team analyze all papers published on NIPS in the past years, and presents the 15 most influential papers for each year. This ranking list is automatically construc
| | neuralnetworksanddeeplearning.com
19.5 parsecs away

Travel
| [AI summary] The text provides an in-depth explanation of the backpropagation algorithm in neural networks. It starts by discussing the concept of how small changes in weights propagate through the network to affect the final cost, leading to the derivation of the partial derivatives required for gradient descent. The explanation includes a heuristic argument based on tracking the perturbation of weights through the network, resulting in a chain of partial derivatives. The text also touches on the historical context of how backpropagation was discovered, emphasizing the process of simplifying complex proofs and the role of using weighted inputs (z-values) as intermediate variables to streamline the derivation. Finally, it concludes with a citation and licens...