You are here |
cronokirby.com | ||
| | | |
www.jeremykun.com
|
|
| | | | A lot of people who like functional programming often give the reason that the functional style is simply more elegant than the imperative style. When compelled or inspired to explain (as I did in my old post, How I Learned to Love Functional Programming), they often point to the three "higher-order" functions map, fold, and filter, as providing a unifying framework for writing and reasoning about programs. But how unifying are they, really? | |
| | | |
www.jeremykun.com
|
|
| | | | Last time we worked through some basic examples of universal properties, specifically singling out quotients, products, and coproducts. There are many many more universal properties that we will mention as we encounter them, but there is one crucial topic in category theory that we have only hinted at: functoriality. As we've repeatedly stressed, the meat of category theory is in the morphisms. One natural question one might ask is, what notion of morphism is there between categories themselves? | |
| | | |
homotopytypetheory.org
|
|
| | | | Thierry Coquand and I have proved that, for a large class of algebraic structures, isomorphism implies equality (assuming univalence). A class of algebraic structures Structures in this class consist of a type, some operations on this type, and propositional axioms that can refer to operations and other axioms. N-ary functions are defined in the following... | |
| | | |
djalil.chafai.net
|
|
| | This post is mainly devoted to a probabilistic proof of a famous theorem due to Schoenberg on radial positive definite functions. Let us begin with a general notion: we say that \( {K:\mathbb{R}^d\times\mathbb{R}^d\rightarrow\mathbb{R}} \) is a positive definite kernel when \[ \forall n\geq1, \forall x_1,\ldots,x_n\in\mathbb{R}^d, \forall c\in\mathbb{C}^n, \quad\sum_{i=1}^n\sum_{j=1}^nc_iK(x_i,x_j)\bar{c}_j\geq0. \] When \( {K} \) is symmetric, i.e. \( {K(x,y)=K(y,x)} \) for... |