You are here |
aakinshin.net | ||
| | | |
djalil.chafai.net
|
|
| | | | Convergence in law to a constant. Let \( {{(X_n)}_{n\geq1}} \) be a sequence of random variables defined on a common probability space \( {(\Omega,\mathcal{A},\mathbb{P})} \), and taking their values in a metric space \( {(E,d)} \) equipped with its Borel sigma-field. It is well known that if \( {{(X_n)}_{n\geq1}} \) converges in law as \( {n\rightarrow\infty} \) to some Dirac... | |
| | | |
gregorygundersen.com
|
|
| | | | ||
| | | |
mkatkov.wordpress.com
|
|
| | | | For probability space $latex (\Omega, \mathcal{F}, \mathbb{P})$ with $latex A \in \mathcal{F}$ the indicator random variable $latex {\bf 1}_A : \Omega \rightarrow \mathbb{R} = \left\{ \begin{array}{cc} 1, & \omega \in A \\ 0, & \omega \notin A \end{array} \right.$ Than expected value of the indicator variable is the probability of the event $latex \omega \in... | |
| | | |
jmanton.wordpress.com
|
|
| | If $latex Y$ is a $latex \sigma(X)$-measurable random variable then there exists a Borel-measurable function $latex f \colon \mathbb{R} \rightarrow \mathbb{R}$ such that $latex Y = f(X)$. The standard proof of this fact leaves several questions unanswered. This note explains what goes wrong when attempting a "direct" proof. It also explains how the standard proof... |