|
You are here |
francisbach.com | ||
| | | | |
djalil.chafai.net
|
|
| | | | | This post is mainly devoted to a probabilistic proof of a famous theorem due to Schoenberg on radial positive definite functions. Let us begin with a general notion: we say that \( {K:\mathbb{R}^d\times\mathbb{R}^d\rightarrow\mathbb{R}} \) is a positive definite kernel when \[ \forall n\geq1, \forall x_1,\ldots,x_n\in\mathbb{R}^d, \forall c\in\mathbb{C}^n, \quad\sum_{i=1}^n\sum_{j=1}^nc_iK(x_i,x_j)\bar{c}_j\geq0. \] When \( {K} \) is symmetric, i.e. \( {K(x,y)=K(y,x)} \) for... | |
| | | | |
fa.bianp.net
|
|
| | | | | There's a fascinating link between minimization of quadratic functions and polynomials. A link that goes deep and allows to phrase optimization problems in the language of polynomials and vice versa. Using this connection, we can tap into centuries of research in the theory of polynomials and shed new light on ... | |
| | | | |
stephenmalina.com
|
|
| | | | | Matrix Potpourri # As part of reviewing Linear Algebra for my Machine Learning class, I've noticed there's a bunch of matrix terminology that I didn't encounter during my proof-based self-study of LA from Linear Algebra Done Right. This post is mostly intended to consolidate my own understanding and to act as a reference to future me, but if it also helps others in a similar position, that's even better! | |
| | | | |
algorithmsoup.wordpress.com
|
|
| | | The ``probabilistic method'' is the art of applying probabilistic thinking to non-probabilistic problems. Applications of the probabilistic method often feel like magic. Here is my favorite example: Theorem (Erdös, 1965). Call a set $latex {X}&fg=000000$ sum-free if for all $latex {a, b \in X}&fg=000000$, we have $latex {a + b \not\in X}&fg=000000$. For any finite... | ||