Explore >> Select a destination


You are here

drhayes.io
| | deejaygraham.github.io
1.6 parsecs away

Travel
| | a triumph of style over substance
| | emmas.site
0.5 parsecs away

Travel
| | A succinct observation on the state of web development
| | www.jeremykun.com
0.6 parsecs away

Travel
| | Problem: $ \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1$ Solution: Problem: $ \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots = \frac{1}{2}$ Solution: Problem: $ \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots = \frac{1}{3}$ Solution: Problem: $ 1 + r + r^2 + \dots = \frac{1}{1-r}$ if $ r < 1$. Solution: This last one follows from similarity of the subsequent trapezoids: the right edge of the teal(ish) trapezoid has length $ r$, and so the right edge of the neighboring trapezoid, $ x$, is found by $ \frac{r}{1} = \frac{x}{r}$, and we see that it has length $ r^2$.
| | webrocker.de
0.4 parsecs away

Travel
| Gruß von der #TagesLichtRunde...