|
You are here |
gregorygundersen.com | ||
| | | | |
blog.minitab.com
|
|
| | | | | Regression Analysis: How Do I Interpret R-squared and Assess the Goodness-of-Fit? | |
| | | | |
www.markhw.com
|
|
| | | | | [AI summary] The blog post discusses modeling variance in data using the gamlss package in R, focusing on the user's film ratings over time. It highlights how the standard deviation of ratings increases with the release year of films, reflecting the user's movie selection habits. The analysis shows that older films have higher average ratings and lower variability, while newer films have lower average ratings and higher variability. The post emphasizes the importance of considering variance in social phenomena and provides practical examples using R for data visualization and statistical modeling. | |
| | | | |
www.johnmyleswhite.com
|
|
| | | | | One of the misuses of statistical terminology that annoys me most is the use of the word "correlation" to describe any variable that increases as another variable increases. This monotonic trend seems worth looking for, but it plainly is not what most people discover when they use standard correlation coefficients. This is because the Pearson product moment correlation coefficient, which is usually the only correlation coefficient students learn to calculate, is strongly biased towards linear trends: tho... | |
| | | | |
www.nicholas-ollberding.com
|
|
| | | Inherent limitations with one-at-a-time (OaaT) feature testing (i.e., single feature differential abundance analysis) have contributed to the increasing popularity of mixture models for correlating microbial features with factors of interest (i. | ||