|
You are here |
www.rareskills.io | ||
| | | | |
hadrienj.github.io
|
|
| | | | | In this post, we will see special kinds of matrix and vectors the diagonal and symmetric matrices, the unit vector and the concept of orthogonality. | |
| | | | |
andrea.corbellini.name
|
|
| | | | | [AI summary] The text provides an in-depth explanation of elliptic curve cryptography (ECC), covering fundamental concepts such as elliptic curves over finite fields, point addition, cyclic subgroups, subgroup orders, and the discrete logarithm problem. It also discusses practical aspects like finding base points, cofactors, and the importance of choosing subgroups with high order for cryptographic security. The text emphasizes that ECC relies on the difficulty of solving the discrete logarithm problem on elliptic curves, which is considered computationally hard and forms the basis for secure cryptographic protocols like ECDH and ECDSA. | |
| | | | |
thenumb.at
|
|
| | | | | ||
| | | | |
jaketae.github.io
|
|
| | | In this short post, we will take a look at variational lower bound, also referred to as the evidence lower bound or ELBO for short. While I have referenced ELBO in a previous blog post on VAEs, the proofs and formulations presented in the post seems somewhat overly convoluted in retrospect. One might consider this a gentler, more refined recap on the topic. For the remainder of this post, I will use the terms "variational lower bound" and "ELBO" interchangeably to refer to the same concept. I was heavily inspired by Hugo Larochelle's excellent lecture on deep belief networks. | ||