|
You are here |
randorithms.com | ||
| | | | |
www.aleksandrhovhannisyan.com
|
|
| | | | | Some systems of equations do not have a unique solution, but we can find an approximate solution using the method of least squares. Applications of this method include linear and polynomial regression. | |
| | | | |
fredrikj.net
|
|
| | | | | ||
| | | | |
jaketae.github.io
|
|
| | | | | In this post, we will take a look at Nyström approximation, a technique that I came across in Nyströmformer: A Nyström-based Algorithm for Approximating Self-Attention by Xiong et al. This is yet another interesting paper that seeks to make the self-attention algorithm more efficient down to linear runtime. While there are many intricacies to the Nyström method, the goal of this post is to provide a high level intuition of how the method can be used to approximate large matrices, and how this method was used in the aforementioned paper. | |
| | | | |
ch-st.de
|
|
| | | An introduction to raymarching in C++ with diffuse Phong shading and ASCII-terminal output. | ||