|
You are here |
towardsdatascience.com | ||
| | | | |
neuralnetworksanddeeplearning.com
|
|
| | | | | [AI summary] The text provides an in-depth explanation of the backpropagation algorithm in neural networks. It starts by discussing the concept of how small changes in weights propagate through the network to affect the final cost, leading to the derivation of the partial derivatives required for gradient descent. The explanation includes a heuristic argument based on tracking the perturbation of weights through the network, resulting in a chain of partial derivatives. The text also touches on the historical context of how backpropagation was discovered, emphasizing the process of simplifying complex proofs and the role of using weighted inputs (z-values) as intermediate variables to streamline the derivation. Finally, it concludes with a citation and licens... | |
| | | | |
www.jeremymorgan.com
|
|
| | | | | Want to learn about PyTorch? Of course you do. This tutorial covers PyTorch basics, creating a simple neural network, and applying it to classify handwritten digits. | |
| | | | |
attardi.org
|
|
| | | | | This is the story of how I trained a simple neural network to solve a well-defined yet novel challenge in a real iOS app. The problem is unique, but most of what I cover should apply to any task in any iOS app. That's the beauty of neural networks. | |
| | | | |
www.chrisritchie.org
|
|
| | | [AI summary] A blog post discussing the simulation of artificial life with neural networks, focusing on agent behavior, population dynamics, and future development goals. | ||