|
You are here |
www.jeremykun.com | ||
| | | | |
thatsmaths.com
|
|
| | | | | A digital signature is a mathematical means of verifying that an e-document is authentic, that it has come from the claimed sender and that it has not been tampered with or corrupted during transit. Digital signatures are a standard component of cryptographic systems. They use asymetric cryptography that is based on key pairs, consisting of... | |
| | | | |
www.quantamagazine.org
|
|
| | | | | A team of mathematicians has solved an important question about how solutions to polynomial equations relate to sophisticated geometric objects called Shimura | |
| | | | |
www.johndcook.com
|
|
| | | | | The Bitcoin key mechanism is based on elliptic curve cryptography over a finite field. This post gives a brief overview. | |
| | | | |
francisbach.com
|
|
| | | [AI summary] The blog post discusses non-convex quadratic optimization problems and their solutions, including the use of strong duality, semidefinite programming (SDP) relaxations, and efficient algorithms. It highlights the importance of these problems in machine learning and optimization, particularly for non-convex problems where strong duality holds. The post also mentions the equivalence between certain non-convex problems and their convex relaxations, such as SDP, and provides examples of when these relaxations are tight or not. Key concepts include the role of eigenvalues in quadratic optimization, the use of Lagrange multipliers, and the application of methods like Newton-Raphson for solving these problems. The author also acknowledges contributions... | ||