|
You are here |
shrik3.com | ||
| | | | |
rog3rsm1th.github.io
|
|
| | | | | The Okamoto-Uchiyama cryptosystem is a semantically secure, asymmetric encryption algorithm. It was first introduced in 1998 by Tatsuaki Okamoto and Shigenori Uchiyama. The method is additive-homomorphic, which means that the plaintexts are added by multiplying two ciphertexts. It is therefore not necessary to decrypt the ciphertexts in order to be able to operate on the plaintexts. While searching for implementations of this algorithm on github, I realized that there were only two rough implementations. | |
| | | | |
dusty.phillips.codes
|
|
| | | | | The venerable RSA public key encryption algorithm is very elegant. It requires a basic understanding of modular arithmetic, which may sound scary if you havent studied it. It reduces to taking the remainder after integer long division. The RSA Wikipedia article describes five simple steps to generate the keys. Encryption and decryption are a matter of basic exponentiation. Theres no advanced math, and its easy to understand their example of working with small numbers. | |
| | | | |
vaguery.com
|
|
| | | | | ||
| | | | |
www.daniellowengrub.com
|
|
| | | [AI summary] The text discusses the implementation of homomorphic operations in the context of RLWE (Ring Learning With Errors) and GSW (Gentry-Sahai-Waters) encryption schemes. Key concepts include the use of encryptions of zero to facilitate homomorphic multiplication, the structure of GSW ciphertexts as matrices of RLWE ciphertexts, and the role of scaling factors to manage error growth during multiplication. The main goal is to enable secure computation of polynomial products without revealing the underlying plaintexts. | ||