You are here |
mathscholar.org | ||
| | | |
www.jeremykun.com
|
|
| | | | In our last primer we saw the Fourier series, which flushed out the notion that a periodic function can be represented as an infinite series of sines and cosines. While this is fine and dandy, and quite a powerful tool, it does not suffice for the real world. In the real world, very little is truly periodic, especially since human measurements can only record a finite period of time. Even things we wish to explore on this blog are hardly periodic (for instance, image analysis). | |
| | | |
kpknudson.com
|
|
| | | | ||
| | | |
micromath.wordpress.com
|
|
| | | | Continuing the theme of alternative approaches to teaching calculus, I take the liberty of posting a letter sent by Donald Knuth to to the Notices of the American Mathematical Society in March, 1998 (TeX file). Professor Anthony W. Knapp P O Box 333 East Setauket, NY 11733 Dear editor, I am pleased to see so... | |
| | | |
cyclostationary.blog
|
|
| | Our toolkit expands to include basic probability theory. |