 
      
    | You are here | alanrendall.wordpress.com | ||
| | | | | mikespivey.wordpress.com | |
| | | | | It's fairly well-known, to those who know it, that $latex \displaystyle \left(\sum_{k=1}^n k \right)^2 = \frac{n^2(n+1)^2}{4} = \sum_{k=1}^n k^3 $. In other words, the square of the sum of the first n positive integers equals the sum of the cubes of the first n positive integers. It's probably less well-known that a similar relationship holds... | |
| | | | | www.encyclopediaofmath.org | |
| | | | | ||
| | | | | thehighergeometer.wordpress.com | |
| | | | | Here's a fun thing: if you want to generate a random finite $latex T_0$ space, instead select a random subset from $latex \mathbb{S}^n$, the $latex n$-fold power of the Sierpinski space $latex \mathbb{S}$, since every $latex T_0$ space embeds into some (arbitrary) product of copies of the Sierpinski space. (Recall that $latex \mathbb{S}$ has underlying... | |
| | | | | 77wolfhowls.wordpress.com | |
| | | Metal Detectors In Movie Theaters. | ||