|
You are here |
lucatrevisan.wordpress.com | ||
| | | | |
algorithmsoup.wordpress.com
|
|
| | | | | The ``probabilistic method'' is the art of applying probabilistic thinking to non-probabilistic problems. Applications of the probabilistic method often feel like magic. Here is my favorite example: Theorem (Erdös, 1965). Call a set $latex {X}&fg=000000$ sum-free if for all $latex {a, b \in X}&fg=000000$, we have $latex {a + b \not\in X}&fg=000000$. For any finite... | |
| | | | |
jeremykun.com
|
|
| | | | | Hard to believe Sanjeev Arora and his coauthors consider it"a basic tool [that should be] taught to all algorithms students together with divide-and-conquer, dynamic programming, and random sampling."Christos Papadimitriou calls it"so hard to believe that it has been discovered five times and forgotten." It has formed the basis of algorithms inmachine learning, optimization, game theory, | |
| | | | |
nickhar.wordpress.com
|
|
| | | | | The algorithm for probabilistically embedding metric spaces into trees has numerous theoretical applications. It is a key tool in the design of many approximation algorithms and online algorithms. Today we will illustrate the usefulness of these trees in designing an algorithm for the online Steiner tree problem. 1. Online Steiner Tree Let $latex {G=(V,E)}&fg=000000$ be... | |
| | | | |
jaketae.github.io
|
|
| | | In this short post, we will take a look at variational lower bound, also referred to as the evidence lower bound or ELBO for short. While I have referenced ELBO in a previous blog post on VAEs, the proofs and formulations presented in the post seems somewhat overly convoluted in retrospect. One might consider this a gentler, more refined recap on the topic. For the remainder of this post, I will use the terms "variational lower bound" and "ELBO" interchangeably to refer to the same concept. I was heavily inspired by Hugo Larochelle's excellent lecture on deep belief networks. | ||