You are here |
www.oranlooney.com | ||
| | | |
mattbaker.blog
|
|
| | | | In honor of Pi Day 2023, I'd like to discuss Hilbert's 7th Problem, which in an oversimplified (and rather vague) form asks: under what circumstances can a transcendental function take algebraic values at algebraic points? The connection with $latex \pi$ is that Lindemann proved in 1882 that the transcendental function $latex f(z) = e^z$ takes... | |
| | | |
corbettmaths.com
|
|
| | | | The Ultimate GCSE Foundation Maths Revision Video and Booklet - Edexcel AQA OCR - Corbettmaths | |
| | | |
www.jeremykun.com
|
|
| | | | In our last primer we saw the Fourier series, which flushed out the notion that a periodic function can be represented as an infinite series of sines and cosines. While this is fine and dandy, and quite a powerful tool, it does not suffice for the real world. In the real world, very little is truly periodic, especially since human measurements can only record a finite period of time. Even things we wish to explore on this blog are hardly periodic (for instance, image analysis). | |
| | | |
www.jeremykun.com
|
|
| | The First Isomorphism Theorem The meat of our last primer was a proof that quotient groups are well-defined. One important result that helps us compute groups is a very easy consequence of this well-definition. Recall that if $ G,H$ are groups and $ \varphi: G \to H$ is a group homomorphism, then the image of $ \varphi$ is a subgroup of $ H$. Also the kernel of $ \varphi$ is the normal subgroup of $ G$ consisting of the elements which are mapped to the identity under $ \varphi$. |